Projectile motion with air resistance quadratic in the speed

G. W. Parker

Department of Physics, North Carolina State University, Raleigh, North Carolina 27607

(Received 27 July 1976; accepted 22 February 1977)

We consider two-dimensional motion of a projectile experiencing a constant gravitational
force and a fluid drag force which is quadratic in the projectile’s speed. The equations of
motions are coupled nonlinear equations. Their solutions have general properties which are
easily visualized, although much different from those obtained when a drag force is
neglected. Because of these features a study of these equations would provide an interesting
counterpoint to the already familiar case of no drag. In this paper we derive simple
approximate solutions to the equations of motion for both short and long times. A numerical
example is used to compare these approximate solutions with accurate results obtained by
numerical integration from an exact but implicit solution. Finally, the origin of the quadratic

drag force is discussed.

I. INTRODUCTION

Physics students are certainly familar with the solution
of projectile problems when air resistance is neglected.
Since, in practice, air resistance is usually not negligible,
it would be of some interest to develop solutions of the
equations of motion including an appropriate drag force.

If one assumes a drag force which is linear in the speed,
then it is straightforward to solve the equations of motion.
Such a drag force actually occurs for low Reynolds num-
bers, # < 1, and is dependent upon the viscosity of the fluid.
To determine whether or not it applies, one must calculate
the Reynolds number. For a sphere of radius r moving in
a fluid of density p and viscosity 7, the viscous drag force
and the Reynolds number are!-2

F=6mprv for R<1,
R =2rpVy—1. (1)
The terminal speed U is then given by
6mnprU = mg = 4nripsg/3,

where p; is the sphere’s density. In order that Eq. (1) apply
to the whole of a trajectory, we require R < 1 for speeds up
to the terminal speed. This can be considered a minimum
requirement since projectiles are often started off with
speeds greater than this. Assuming a sphere which has the
density of water, 1 g/cm3, and using the value n/p = 0.15
c¢m?/sec for air, one finds that Eq. (1) applies when!

rs4x1073cm. 2)

Spheres this small would seem to be of little interest. In fact,
these small radii are not that far from the mean free path
X of air molecules, which is typically of the order of 1073
cm. A second criterion for the validity of Eq. (1) is?

r>Aa ‘ 3)

We conclude from Egs. (2) and (3) that Eq. (1) almost
never applies exclusively.* .

It is known that for spheres with radii and speeds of
practical interest a reasonable approximation to the drag
force is5-©

F = CppAv?/2 for1 K R <105 4
The drag coefficient is
Cp=~h,
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and A = wr? is the cross-sectional area. This law, Eq. (4),
holds for large Reynolds numbers and is associated with
turbulence produced in the sphere’s wake as described in
Sec. VIII. As an example, it has been shown that a stone of
1-cm radius would have a terminal speed of about 30 m/sec
in air.” Using the value of p/7 given above, we see that this
speed corresponds to a Reynolds number of 4 X 104, It is
true that, if the stone were dropped from rest, Eq. (1) would
hold initially, but it would only be for very short times.”
Thus, it is Eq. (4) rather than Eq. (1) that is of practical
interest.

The equations of motion including the drag force of Eq.
(4) are more difficult to solve, however. An exact and ex-
plicit solution for vertical free fall, or one-dimensional
motion, can be obtained rather easily.8 For two-dimensional
motion, however, no such solution appears to exist. This
offers an opportunity to develop approximate solutions to
a nonlinear problem of some pedagogical interest. Thus, in
this paper, we derive some simple approximate solutions for
both long and short times. In addition, an exact but implicit
solution is developed which enables accurate numerical
solutions to be calculated for comparison. Finally, we
present a description of the quadratic drag force which fo-
cuses attention on the kind of turbulence that is known to
be associated with this force law.

II. EQUATIONS OF MOTION AND SOME
GENERAL PROPERTIES OF THEIR
SOLUTIONS

The equations of motion are
m dvy/dt = —bv,(v52 + v,2)1/2,
m dv,/dt = —mg — bv, (2 + v, 2)!/2.
We have chosen the positive y direction to be vertically
upward and the constant b to represent the coefficient in
Eq. (4). The natural scale of velocities is set by the terminal

speed V, which corresponds to the solution v, = 0, v, = —V.
Thus,

V= (mg/b)/.

This is the only combination of the available parameters
which has velocity units. Given this speed and the acceler-
ation of gravity, the natural time unit is

T=V/g
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This is a measure of the time required to reach terminal
speed. With these two units all subsequent equations may
be expressed in dimensionless form. To this end we define
scaled time, velocity, and displacement variables as fol-
lows:

T=1T,
u,=vy/V, u,=v,/V,
X=x/VT, Y=y/VT.

In terms of these new variables, the equations of motion
are

Uy = _ux(uxz + uy2)1/2,
iy = —1 — uy(ux? + uy?)1/2, (5

Here we have used dots to denote derivatives of u,(7) and
uy(7) with respect to 7. The new displacements are

X=Xo+ j;’u,,dr, Y=Y0+J;Tuyd-r. (6)

It will be seen that for times 7, or speeds u = (ux? + u,2)!/2,
or displacements X or ¥ small compared to unity the effects
of air resistance will be small.

We describe here some general properties of the solutions
of Eq. (5): (1) The most often noted feature of Eq. (5) is the
existence of the terminal speed V. Hail stones are a good
example to use. Their speed with no drag would make them
lethal. (2) No matter what the velocity is initially, the final
velocity is always the same, namely u, = 0, u, = —1. (3)
Every path in the x,y plane corresponding to different initial
velocities has a different shape. In the absence of drag every
path has the same parabolic shape. Thus, the higher the
initial speed of a projectile for a given upward projection
angle the more blunted the forward end of its path becomes,
i.e., the less symmetrical it is about its peak. (4) The max-
imum horizontal range for a given initial speed occurs at
angles less than 45°, and the greater the initial speed, the
lower the projection angle that is required. For example, we
find that the maximum horizontal range occurs at 36° for
an initial speed uo = 2. (5) Since u, approaches zero from
its initial value u,g, there is a maximum horizontal dis-
placement which will be of the order of u,q in terms of
scaled variables (i.e., vxoT = u,oVT). Similarly, if the
projectile is fired upward, it will reach a maximum y dis-
placement of the order of u,0, where u,q is the initial value
of u,.

III. LOW TRAJECTORY—SHORT-TIME
APPROXIMATION

An initial approach to the solution of Eq. (5) may be
made by simplifying these equations from the outset.
Consider projections made at low angles such that u, %/u,?
<« 1 over a portion of a path. Then Eq. (5) becomes

Uy = —uyx?, Gy~ —1 = uuy.

The u, equation may be integrated to give
uy = uxo(1 + uxor)~".

To simplify the u, equation, put

u, = huy (7)
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so that u,s = —1. Then

h=m—f7ux"dr. ®)

Ux0 0

Using Eqgs. (7) and (8) and the result for u,, we obtain
Uy = uxo(l + uxOT)—I.

uy = [uyo — 7(1 + uxor/2)](1 + uyor)~". 9)

_The displacements calculated from Eq. (9) for Xy = Yy =

0 are
X = In(1 + uyor),
Y =—7/2uy— 7?/4
+ (upof/uxo + 1/2ux0?) In(1 + u,97).  (10)
Equations (9) and (10) are both valid as long as u, %/u,?

< 1. Substituting these approximate solutions into this
inequality shows that it is satisfied as long as

Uy fuxe? <1 and 72K 1.

Both of these conditions are necessary since eventually the
projectile’s velocity turns downward. We may, however,
remove the restriction to small initial projection angles as
shown in Sec. IV.

If we eliminate the time between X and Y in Eq. (10), we
obtain a relation valid for low trajectories, which is

Y= X(uyo/ux() + 1/2ux02) + (1 - eZX)/4ux02.

This result has been derived by Lamb® using a different
approach.

IV. SHORT-TIME APPROXIMATION

By reducing the equations for u, and u, to a single
equation we will be able to obtain useful approximations
for both short and long times. Note that Eq. (5) requires
that

(uy + 1)ty = uyfuy.
This has the solution, already encountered in Egs. (7) and

(3),
Uy = Uy (M-ffux“d‘r). (11)
} Ux0 0

Substituting Eq. (11) into Eq. (5) and simplifying the result
with the substitution

Z=1/ux, (12)
we obtain
T 211/2
z'=[1+<f‘ﬂ—f zdr)]/. (13)
UxQ 0

Now expand z about 7 = 0 using the preceding equation to
evaluate derivatives. This gives

(14)

where up = (ux0® + 1,0?)!/2 In order that the first two
terms suffice, we require

zZ= l/uxo + uoT/uxO - uyo-rZ/Zuxouo +... R

T uoz/uyo.

(15)

Then the approximate solution is, from Eqs. (11), (12), and
(14),
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uy = uxo(l + uOT)_l,
uy, = [uyo — 7(1 + uor/2)J(1 + uor)~". (16)

These solutions reduce to those given by Eq. (9) when u,,0%/
uxo® < 1. The only criterion for the validity of Eq. (16) is
the short-time condition, Eq. (15). For very short times Eq.
(16) reduces to

Uy = Ux0, Uy T Uy — T,

which are the solutions for no drag. The displacements
corresponding to the velocities in Eq. (16) are obtained from
Eq. (10) by replacing u,o with ug.

To complement the short-time approximation given here,
we will obtain in Sec. V a solution valid for 7 > 1.

V. LONG-TIME APPROXIMATION

Since u, ultimately approaches zero, the variable z de-
fined in Eq. (12) will approach infinity at long times. We
thus expand Eq. (13) in inverse powers of {§z dr, giving

T T -1
z‘zf zdf—-i‘y—0+(2f sz) ..
0 Ux0 0

We assume
f zdr > 1,
0

z~‘ffzd7—5ﬂ. (18)
0 Ux0

Since Z =~ z, Eq. (18) is solved by a combination of expo-
nentials. Substituting z = Ae” + Be~" into Eq. (18) and
requiring A and B to give the initial value of z leads to

(17)

so that

Z = uyg~! coshT — uyguxo~! sinhr.
Compbined with Eq. (11), this gives
Uy = uyo(cosht — uyg sinh7)~!,
uy, = (uyo coshr — sinh7)(coshr — u,o sinhr)~!.

(19)

These results are generally valid when 7 >> 1. Evaluating
S & zdr tosee when Eq. (17) is satisfied, we find

Trdr M0 (1= )2 — (1 )
j; zdr~o (1 = uy0) g (1 + uy0) iro
(20)

Thus, for u,p # 0, Eq. (17) will ultimately be satisfied
provided the coefficient of e” in Eq. (20) is positive or

uy0< 1.

Equation (20) then shows that the long-time solution will
apply for earlier times when u,¢ or u, or both u, and 1,
are reduced. When u,0 = 0, Eq. (19) is the exact solution
of the equation for downward motion,

i, = —1+u,

VI. EXACT IMPLICIT SOLUTION

It is known that Eq. (5) can be reduced to quadra-
tures.'0-12 One way of doing that is described here.

The original equations of motion have been reduced to
the single first-order equation, Eq. (13). This is simplified
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further by defining
w= j; ! zdr — M,

Thus, Eq. (13) becomes

w=(1+w2)l2
Multiplying this equation by w, we have
(1/2)(aw?/dr)

=w(l + w?)1/2 = (dffdw)(dw/dT) = dffdr, (21)
where
dffdw = (1 + w)!/2, (22)
Integration of Eq. (21) gives
w2 =wo? + 2f(w) — 2f(wo), (23)

and from Eq. (22),
Sw) = /2w +w)/24+(1/2) In[w + (1 + w?2)1/2].

Since wg = zg = 1/uxoand wo = —u,o/ux0, We obtain upon
integration of Eq. (23),

J‘W do
—uyo/uxo S (ar)
where

s(a) = [1/uxo® + 2f(e) = 2f(—uypofuxo)]'/2. (25)

Equations (24) and (25) give w implicitly as a function of
7. Even if the indefinite integral could be evaluated, we
would probably not be able to invert the resulting expression
to obtain an explicit solution. Actually, the numerical in-
tegration of Eq. (24) is straightforward. Once w is obtained,
w is given by Eq. (25);i.e.,

7, (24)

w = s(w). (26)
The velocity components are then
Uy = 1w, u, = —wh. 27

The displacements may be obtained from Eq. (6) or by
using the transformations u, = w dX/dw and u, = w dY/dw
to obtain

da
—~Uy0/Ux0 sz(a) ’

w da
Y=Yy— .
0 ‘I‘_”yo/“xoasz(a)

X=X0+

VII. NUMERICAL EXAMPLE
We choose the following initial conditions

uxo=1, up=1%.

These correspond to a large enough speed for air resistance
to produce significant effects over the initial trajectory while
still being in the range of validity of the short-time solution
over most of the horizontal range. The short- and long-time
solutions were evaluated and compared with the accurate
solution obtained from Egs. (24)-(27).!3 The results are
presented in Figs. 1-3.
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Fig. 1. Vertical component of velocity. Accurate values of the y component
of velocity as a function of time are plotted as the solid line which ap-
proaches —¥ as a limit. The short-time approximation is indicated by open
circles, while the closed circles show the long-time approximation. For no
drag force this component of velocity is the straight line shown.

Figure 1 shows the y component of the velocity as a
function of time. The zero drag solution is u, = u,o — 7, and
it starts to deviate from the accurate solution near 7 = 0.5.
The short-time and long-time solutions are in agreement
up to about 7 = 1.2, and they are not too much different
from the accurate solution. Beyond r = 1.2 the short-time
solution deviates significantly from the accurate solution.
The long-time approximation remains close to the accurate
solution, which it ultimately approaches near the limiting
speed asymptote.

Figure 2 shows the x component of the velocity. In the
limit of no drag we have u, = u,o = 1, as indicated there.
The short-time approximation shows a significant decrease
in u, that is in good agreement with the accurate solution
up to about 7 = 0.5. The long-time approximation is sub-
stantially in error at these times. For this reason we did not
quote formulas for displacements obtained in the long-time
approximation. Clearly, the error in integrating this velocity
component will be cumulative and relatively large in this
case. The long-time solution does approach the accurate
solution beyond r = 4.

The path in the x,y plane is shown in Fig. 3. For the
portion of the path shown the no drag limit is already sig-
nificantly different from the actual path. The short-time
approximation is in good agreement with the accurate so-
lution over this region. At longer times the accurate solution
is found to approach the limit

X —1.15,

which is approximately equal to u,¢ as anticipated.

Another series of calculations were made for an initial
speed up = 2 and a number of different projection angles
to determine the maximum horizontal range. This maxi-
mum range was found to be 1.22VT, and it occurred for an
angle of 36° above the horizontal.

VIII. TURBULENCE AND THE QUADRATIC
DRAG FORCE

Experiments measuring the drag force often make use
of a cylinder whose axis is perpendicular to the flow. This
tends to produce a two-dimensional flow pattern which is
more easily studied. At the large Reynolds numbers at
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Fig. 2. Horizontal component of velocity. Accurate values of the x com-
ponent of velocity as a function of time are plotted as the solid line. The
short-time approximation is indicated by open circles, while the closed
circles show the long-time approximation. For no drag force this compo-
nent of velocity is constant, as shown.

which a quadratic drag force is observed there is a charac-
teristic periodic pattern of turbulence behind a cylinder.
This turbulence consists almost exclusively of vortices which
are “ripped off” the sides of the cylinder in a periodic
fashion.'# These vortices are shed first from one side and
then the other, giving oppositely rotating elements of fluid
downstream whose radial dimensions are comparble to the
cylinder’s radius. Given this result, one can derive the
quadratic force law by applying conservation of energy.
Two other simple arguments may be used. One is based
on dimensional analysis and the independence of the drag
force on viscosity.® The conclusion is that F = (const)pAV?,
where the constant depends only on the body’s shape and
A is the cross-sectional area of the body. The second uses
Bernoulli’s theorem together with an assumption about the
decreased pressure in the turbulent wake behind a body.’
It may be concluded that the pressure drop from front to
rear is roughly p¥?2/2; hence, the force is about pAV?/2.
An alternative is to apply conservation of energy. This
requires that the work done by an external agent in moving
a body at speed ¥ through a fluid equals the rate at which
energy is produced in the fluid. It is evident in this case that
this energy is initially concentrated in vortices whose kinetic

20 r //’— \\\
3 /// \\\
161 (Y/VTNO \
\
\
\
12F \
\
\
\
8r \
\
\
\
4+ \
\
XIVT \
o) 1 | 1 |
0O 01 0.2 o 04

Fig. 3. Trajectories. The solid curve shows the short-time approximation,
while the dashed curve gives the path for no drag force. The circles are
some points on the trajectory obtained by accurate numerical integra-
tion.
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energy can be estimated to be roughly that of a rigidly ro-
tating fluid cylinder; i.e.,

KE ~ [w?/2.
The moment of inertia is then
I~ Mr?/2,

where M is the mass of fluid rotating at angular speed w.
The radius of a vortex is taken to be that of the cylinder
which produced it. The angular speed is then of the order
of

w = Vjr.

On the time scale of their creation, i.e., At ~ r/V, the rate
of kinetic energy production is then

A(KE)/Ar = r2w?M(A1)"1/4,
where
M = ApVAt

is the mass of fluid encountered by the cylinder in the time
At. The power supplied is FV, so

FV ~ ApVr2w?/4 ~ pAV3/4
and
Fr~pAV?/4.
The definition of the drag coefficient Cp is
Cp = F/(pAV?/)2),

where A is the cross-sectional area of the body that is pre-
sented to the fluid stream. Our calculation of F gives Cp ~
5. From experiment, the drag coefficient of a cylinder is
Cp ~ 1.2, which is in agreement with our crude esti-
mate.

A sphere generates a three-dimensional flow pattern, but
it is known that a somewhat similar vortex shedding process
occurs for it.13

To conclude this section, we contrast the turbulent sit-
uation just described, in which the quadratic force law is
valid and 1 « & < 103, with the nonturbulent regime, in
which 72 < 1. In the latter case the flow is said to be laminar
or “layered” rather than turbulent. Streamlines curve
around a sphere (say) indicating a disturbance of the fluid
which extends a distance of the order of r, the sphere’s ra-
dius, into the stream from the surface of the sphere.!® In
other words, if the speed of flow of undisturbed fluid relative
to the sphere is V, there is a

velocity gradient =V/r.

This result depends on the fact that the velocity of the fluid
relative to the sphere’s surface goes to zero at this surface.
The viscosity of the fluid determines how one “layer” drags
on another. The magnitude of this force depends on the
viscosity coefficient n and the velocity gradient as fol-
lows!7:

force per unit area = n(velocity gradient).
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For a sphere we have
Flamr2 = n(V/r),
or
F~d4mygrV for R <1.

We thus obtain a reasonable estimate of Stokes’s law, Eq.
(1), which is F = 6xnrV.
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