Biology Reference Tables*

Edition V, 1/9/17 ———

Table A – The Metric System

Prefix	Symbol	Value	Power of ten		
Giga	G	1,000,000,000	109		
		100,000,000	108		
		10,000,000	107		
Mega	M	1,000,000	10^{6}		
		100,000	10 ⁵		
Myria (archaic)	my	10,000	104		
Kilo	k	1,000	10 ³		
Hecto	h	100	10^{2}		
Deca	da	10	10^{1}		
None	None	1	100		
Deci	d	.1	10-1		
Centi	С	.01	10-2		
Milli	m	.001	10-3		
Myrio (archaic)	None	.0001	10-4		
		.00001	10 ⁻⁵		
Micro	μ	.000001	10-6		
		.0000001	10-7		
		.00000001	10-8		
Nano	n	.000000001	10-9		

Table B – Properties -o- Water

Boiling Point100°C	Energy gained during melting330 J/g
Freezing Point0°C	Energy released during freezing330 J/g
Density at 3.89 °C g/mL	Energy gained during vaporization2260 J/g
Specific heat of liquid water4.186 J/g⋅°C	Energy released during condensation2260 J/g

^{*}These Biology Reference Tables (BRT) may be used on any test, quiz or other assignment during the year. They must not be used for the Regents exam. Only the most current edition of the BRT may be used; older editions must be recycled. This document has no connection whatsoever with any state agencies and it is not an official publication. It is not produced by state agencies and is not recommended or endorsed by them, in fact, they don't like it at all. This document may be freely reproduced, amended, edited or changed in any way for educational purposes.

Table C – Useful Formulæ

Table D – Selected Temperature Scales

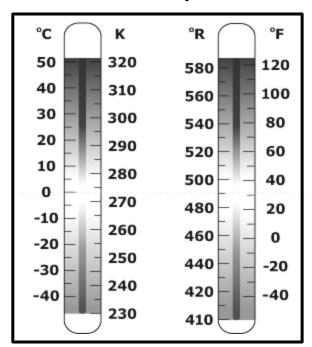


Table F – Selected Functional Groups

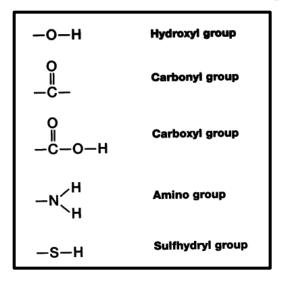


Table E – Selected Genetics Terms

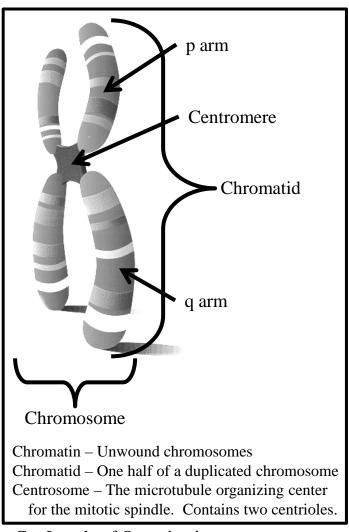


Table G – Levels of Organization

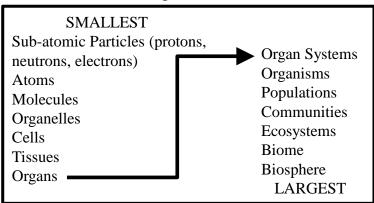


Table H – Stages of Mitosis

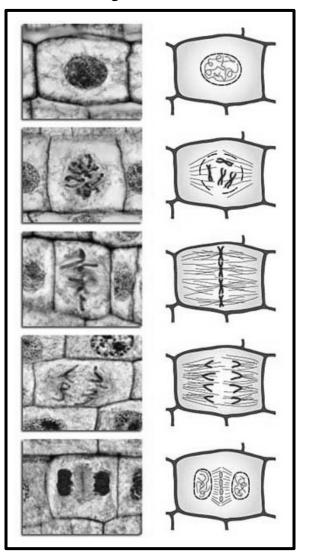


Table I – Cellular Respiration

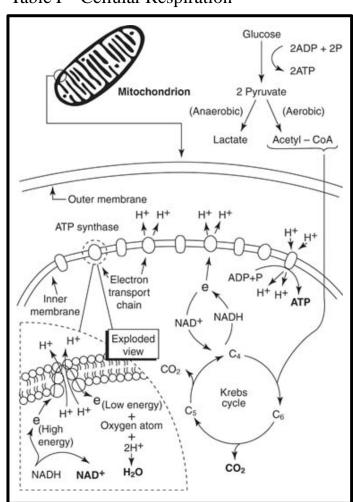


Table J – The Universal Genetic Code

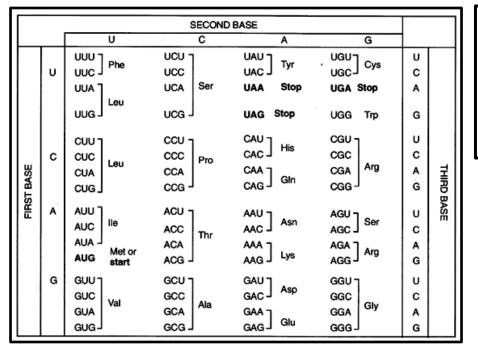


Table K – Selected Acronyms

WTSGTWF
IPMAT
RRR GENTS
OIL RIG
LEOGER

Table L – The Periodic Table of the Elements

	-			710		1
18 8A 8A 2 10 10 Ne 20.18	Ar 39.95	36 Kr 83.80	54 Xe 131.3	86 Rn (222)	118 Uuo (222)	
17 7A 9 9 19,00 17	Cl 35.45	35 Br 79.90	53 I 126.9	85 At (210)		
16 6A 8 8 0 0 16.00 16	S 32.07	34 Se 78.96	52 Te 127.6	84 Po	116 Uuh (223)	71 Lu 175.0 103 Lr (262)
15 5A 7 7 7 1401 15	P	33 As 74.92	51 Sb 121.8	83 Bi ^{209.0}		70 Yb 173.0 102 No (259)
114 4A 6 C C C 1201 14	Si 28.09	32 Ge 72.61	50 Sn 118.7	82 Pb 207.2	114 Uuq (222)	69 Tm 168.9 101 Md (258)
13 3A 5 5 10.81 13	Al 26.98	31 Ga 69.72	49 In 114.8	81 TI 204.4		68 167.3 100 Fm
	12 2B	30 Zn 65.39	48 Cd 112.4	80 Hg 200.6		67 Ho 164.9 99 Es
						98 Cf (251)
	11 1B	29 Cu 63.55	47 4 Ag 4 107.9	79 1 Au 197.0		65 TTb 1 158.9 1 97 (247) (9
	10 8B	28 Ni 58.69	46 Pd 106.4	78 Pt	0110 Ds	
	9 8B	27 Co 58.93	45 Rh 102.9	77 Ir 192.2	109 Mt (266)	64 157.3 Cm (247)
	8 8B	26 Fe 55.85	44 Ru 101.1	76 Os 190.2	108 Hs (265)	63 Eu 152.0 95 Am (243)
	7 7B	25 Mn 54.94	43 Tc	75 Re 186.2	107 Bh (262)	52 Sm 150.4 94 Pu (244)
	6B	24 Cr 52.00	42 Mo 95.94	74 W 183.8	106 28	61 (45) (237)
			0000000	0.00	105 Db	60 Nd 144.2 92 U
			1000		104 1 Rf 1 (261) (. 6 . 20
		- 10				23.0 23.0 23.0 23.0
		8			89 (227)	, 2
2A 2A 4 4 Be 9012 12	Mg 24.31	20 Ca ^{40.08}	38 Sr 87.62	56 Ba 137.3	88 Ra (226)	
1 1A 1.008 3 3 1.1008 1.1008 1.1008 1.1008 1.1008 1.1008 1.1008	Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 1329	87 Fr (223)	
	(8)			Dia.		